is customarily computed and the correlation matrix is computed from this matrix by using the fact that

$$
a_{p+1, p+1}=N, a_{2, p+1}=\sum_{n=1}^{N} x_{n i} ; \quad i=1, \cdots, p
$$

In addition to adding a component which is identically one to each observation vector, let us form a new vector $c_{n 1}, c_{n 2}, \cdots, c_{n p}$ where $c_{n i}$ is zero if the i th component of the observation vector is missing and one otherwise. Letting each element of missing data have value zero, we form the cross product matrices

$$
\begin{array}{ll}
s_{\imath j}=\sum_{n=1}^{N} x_{n i} x_{n j} & i, j=1, \cdots, p+1 \\
n_{i j}=\sum_{n=1}^{N} c_{n i} c_{n j} & i, j=1, \cdots, p
\end{array}
$$

The means m_{i}, covariances $v_{i j}$, and correlations $r_{\imath \jmath}$ are computed from these matrices by the formulas

$$
\begin{aligned}
m_{i} & =\frac{1}{n_{i i}} s_{i, p+1} \\
v_{i j} & =\frac{1}{n_{i j}} s_{i j}-m_{i} m_{j} \\
r_{i j} & =\frac{v_{i j}}{\sqrt{v_{i i}} \sqrt{v_{j j}}}
\end{aligned}
$$

It should be noted that the statistical properties of these estimates will differ slightly from those computed without missing data. A discussion of some of these properties is given by S. S. Wilks [1].

A FORTRAN program for the computations described in this note is in use at the University of Wisconsin. A write-up and program deck can be obtained by writing to the author.
The University of Wisconsin
Madison 6, Wisconsin

1. S. S. Wilks, "Moments and distributions of estimates of population parameters from fragmentary samples," Ann. Math. Stat., v. 3, 1932, p. 163.

Polynomial Approximations to $I_{0}(x), I_{1}(x)$ and Related Functions

By F. D. Burgoyne

Hitchcock [1] gives polynomial approximations to some Bessel functions of order zero and one and to some related functions. Notable omissions from his list are any approximations to $I_{0}(x)$ or $I_{1}(x)$. The following approximations may serve to fill this gap.

If we write $I_{n}(x)=(2 \pi x)^{-1 / 2} e^{x} F_{n}(x)$, then with the maximum error stated in brackets in each case, and provided $0 \leqq t \leqq 1$,

$$
\begin{array}{rl}
I_{0}(4 t)= & 0.9999999985+4.0000001935 t^{2}+3.9999959541 t^{4} \\
& +1.7778099690 t^{6}+0.4443189384 t^{8}+0.0713758187 t^{10} \\
& +0.0075942968 t^{12}+0.0008267816 t^{14}\left(17 \times 10^{-10}\right), \\
t^{-1} I_{1}(4 t)=1.999999997+4.0000000421 t^{2}+2.6666657853 t^{4} \\
& +0.8888959049 t^{6}+0.1777504042 t^{8}+0.0237615011 t^{10} \\
& +0.0021903549 t^{12}+0.0002011611 t^{14}\left(4 \times 10^{-10}\right), \\
(2 \pi)^{-1 / 2} F_{0}(4 / t)=0 & 3989422809+0.0124667783 t+0.0017623668 t^{2} \\
& +0.0002622220 t^{3}+0.0022585672 t^{4}-0.0128314822 t^{5} \\
& +0.0495811198 t^{6}-0.1209940805 t^{7}+0.1895476618 t^{8} \\
& -0.1867783276 t^{9}+0.1113315511 t^{10}-0.0366694167 t^{11} \\
& +0.0051246015 t^{12}\left(7 \times 10^{-10}\right), \\
(2 \pi)^{-1 / 2} F_{1}(4 / t)=0 & 0.3989422799-0.0374006642 t-0.0029314981 t^{2} \\
& -0.0004377220 t^{3}-0.0023787859 t^{4}+0.0131950213 t^{5} \\
& -0.0507872951 t^{6}+0.1230143060 t^{7}-0.1908332956 t^{8} \\
& +0.1855223758 t^{9}-0.1086298349 t^{10}+0.0349754315 t^{11} \\
& -0.0047486397 t^{12}\left(8 \times 10^{-10}\right) .
\end{array}
$$

The first two approximations were obtained by the economization method of Lanczos [2], which is used by Hitchcock. As he notes, this method is inapplicable for the last two approximations, and these were obtained by collocation at the zeros of $T_{13}^{*}(x)=\cos \left\{13 \cos ^{-1}(2 x-1)\right\}$.
Battersea College of Technology
London, S.W. 11.

1. A. J. M. Hitchсоск, "Polynomial approximations to Bessel functions of order zero and one and to related functions," MTAC, v. 11, 1957, p. 86-88.
2. C. Lanczos, Applied Analysis, Prentice Hall, Inc., New Jersey, 1956.

A Note on the Curve Fitting of Discrete Data by Economization

By F. D. Burgoyne

Suppose that we are given a set of points $\left(x_{i}, y_{i}\right) 0 \leqq i \leqq n$ and we desire to find the polynomial $p(x)$ of given degree $m(<n)$ such that $\max _{i}\left|y_{2}-p\left(x_{i}\right)\right|$ is a minimum. It is well known that this may be performed in good approximation by using the method of least squares to find the polynomial $q(x)$ of degree m such that $\sum_{i}\left\{y_{i}-q\left(x_{i}\right)\right\}^{2}$ is a minimum, and then taking $p(x)=q(x)+c$, where c is constant given by

$$
2 c=\min _{i}\left\{y_{i}-q\left(x_{i}\right)\right\}+\max _{i}\left\{y_{i}-q\left(x_{i}\right)\right\} .
$$

Received July 13, 1961.

